Answer

Verified

486.3k+ views

Hint – The hemispherical tank is made up of iron sheet whose thickness is given to us thus the outer radius of this hemispherical tank will be the sum of the thickness and the inner radius. Use this concept to reach the right solution.

Inner radius of tank is given as ${r_1} = 1{\text{ }}m$

Thickness of the iron sheet of which the hemispherical tank is made up of is 1 cm = 0.01 m (1m = 100 cm)

Thus

Outer radius = Thickness of iron sheet + Inner radius of tank………………………. (1)

Using equation (1)

Outer radius ${r_2}$ = 1 + 0.01 = 1.01 m

Volume of iron used = Volume of the tank of outer radius – Volume of tank of inner radius……… (2)

Now the volume of hemisphere $V = \dfrac{2}{3}\pi {r^3}$ ………………. (3)

Using equation (3) in equation (2) we get

Volume of iron used = $\dfrac{2}{3}\pi {r_2}^3 - \dfrac{2}{3}\pi {r_1}^3$

$ \Rightarrow \dfrac{2}{3}\pi \left( {{r_2}^3 - {r_1}^3} \right)$

On putting the values we get

$\begin{gathered}

\Rightarrow \dfrac{2}{3} \times \dfrac{{22}}{7} \times \left( {{{\left( {1.01} \right)}^3} - {1^3}} \right) \\

\Rightarrow 0.06343{\text{ c}}{{\text{m}}^3} \\

\end{gathered} $

Thus volume of iron used is 0.06343 $c{m^3}$

Note – Whenever we face such a type of problem statement the important basic that we need to take care of is some sides may be in different units as compared to others, thus their conversion into the same units is mandatory to reach the right answer.

Inner radius of tank is given as ${r_1} = 1{\text{ }}m$

Thickness of the iron sheet of which the hemispherical tank is made up of is 1 cm = 0.01 m (1m = 100 cm)

Thus

Outer radius = Thickness of iron sheet + Inner radius of tank………………………. (1)

Using equation (1)

Outer radius ${r_2}$ = 1 + 0.01 = 1.01 m

Volume of iron used = Volume of the tank of outer radius – Volume of tank of inner radius……… (2)

Now the volume of hemisphere $V = \dfrac{2}{3}\pi {r^3}$ ………………. (3)

Using equation (3) in equation (2) we get

Volume of iron used = $\dfrac{2}{3}\pi {r_2}^3 - \dfrac{2}{3}\pi {r_1}^3$

$ \Rightarrow \dfrac{2}{3}\pi \left( {{r_2}^3 - {r_1}^3} \right)$

On putting the values we get

$\begin{gathered}

\Rightarrow \dfrac{2}{3} \times \dfrac{{22}}{7} \times \left( {{{\left( {1.01} \right)}^3} - {1^3}} \right) \\

\Rightarrow 0.06343{\text{ c}}{{\text{m}}^3} \\

\end{gathered} $

Thus volume of iron used is 0.06343 $c{m^3}$

Note – Whenever we face such a type of problem statement the important basic that we need to take care of is some sides may be in different units as compared to others, thus their conversion into the same units is mandatory to reach the right answer.

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How do you graph the function fx 4x class 9 maths CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Give 10 examples for herbs , shrubs , climbers , creepers

Why is there a time difference of about 5 hours between class 10 social science CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is BLO What is the full form of BLO class 8 social science CBSE